Explaining the Audio Visualizer functionality

A short introduction to the sound spectrum

- •The **Sound spectrum** = oscillations with audible frequencies: 20→20.000 Hz
- •The **sinus** = most simple tone

•Try the audio tone generator app to generate sine waves

Vibrating objects

Acoustic properties of a vibrating object
What material?
Shape?
Surrounding materials?

Membrane / thin plate
Tense, flat and thin properties
Good sound propagation

Forced vibrations and resonance

Object + acoustic signal → object vibrates along
 >same sinuses
 >but timing & amplitude can change

Membrane / plate have much air contact
 Responsive to acoustical impacts

Traveling waves

•Membrane / plate: **same speed** for all vibrations •Wavelength:

Reflecting waves

At the ends of the membrane
Incoming traveling waves are bounced back
Making a new traveling wave running in the opposite direction

Standing waves

There can be several traveling waves at once in the membrane
But the membrane can only be in one place!
The shape = sum of all traveling waves

What happens with 2 identical waves going in opposite direction?

Standing waves

 $\cdot So,$ the sum of a traveling wave with its reflection becomes...

•Vibration **nodes** and **antinodes**:

E

·On a membrane: similar, but in 2D \rightarrow patterns

Vibration modes

Reflections all over the place ... many waves!
Some wavelengths match well with the membrane dimensions:

vibration modes occurring at resonance frequencies

•At other frequencies: less responsive

Vibration modes

•Similarly in a membrane ...

2

In reality: sound vibrations are much faster
 They become invisibly small :-/

Visualizations: 'Chladni patterns'

 \cdot Visualizing the vibration modes

G

• Use tone generator app to experiment $\frac{1}{2}$

•Visualizing a single point on the membrane. •But: in detail

Mirror

Membrane up-down: very small in reality

Membrane twist 1: amplified with distance to wall! •vertical line

Recalling the vibration modes ... •The **strongest twist motion** happens • At the resonance frequencies

• Mirror on vibration node (\rightarrow here: twist 1 > 2)

Lissajous patterns

•Complex sound = complicated: many vibration modes together

 \cdot Sinus = easy

Ð

- Only most nearby vibration mode is excited
- Mirror twists 1 & 2
 - same frequency
 - amplitude and phase mostly different
- →We see a range of oval shapes
- ·In practice, non-oval shapes due to:
 - Wall at an angle
 - laser on edge of mirror
 - Too strong vibrations: saturation

Pattern amplitudes

What determines the pattern amplitude?

(5)Distance mirror-wall

(4)Mirror location
(3)Membrane
Resonant?

• Dampened?

Mass: for frequency [↑]
 → amplitude [↓]

(2)Distance source-membrane

Pattern saturation

- Source: amplitude $\hat{1} \rightarrow$ Pattern: amplitude $\hat{1}$ but shape should not change
- If the shape changes, there is saturation ("nonlinearity"